skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jorgenson, Mark Torre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change is expected to induce shifts in the composition, structure and functioning of Arctic tundra ecosystems. Increases in the frequency and severity of tundra fires have the potential to catalyse vegetation transitions with far‐reaching local, regional and global consequences.We propose that post‐fire tundra recovery, coupled with climate change, may not necessarily lead to pre‐fire conditions. Our hypothesis, based on surveys and literature, suggests two climate–fire driven trajectories. One trajectory results in increased woody vegetation under low fire frequency; the other results in grass dominance under high frequency.Future research should address uncertainties regarding possible tundra ecosystem shifts linked to fires, using methods that encompass greater temporal and spatial scales than previously addressed. More case studies, especially in underrepresented regions and ecosystem types, are essential to broaden the empirical basis for forecasts and potential fire management strategies.Synthesis. Our review synthesises current knowledge on post‐fire vegetation trajectories in Arctic tundra ecosystems, highlighting potential transitions and alternative ecosystem states and their implications. We discuss challenges in defining and predicting these trajectories as well as future directions. 
    more » « less
    Free, publicly-accessible full text available March 13, 2026
  2. Permafrost formation and degradation creates a highly patchy mosaic of boreal peatland ecosystems in Alaska driven by climate, fire, and ecological changes. To assess the biophysical factors affecting permafrost dynamics, we monitored permafrost and ecological conditions in central Alaska from 2005 to 2021 by measuring weather, land cover, topography, thaw depths, hydrology, soil properties, soil thermal regimes, and vegetation cover between burned (1990 fire) and unburned terrain. Climate data show large variations among years with occasional, extremely warm–wet summers and cold–snowless winters that affect permafrost stability. Microtopography and thaw depth surveys revealed both permafrost degradation and aggradation. Thaw depths were deeper in post-fire scrub compared to unburned black spruce and increased moderately during the last year, but analysis of historical imagery (1954–2019) revealed no increase in thermokarst rates due to fire. Recent permafrost formation was observed in older bogs due to an extremely cold–snowless winter in 2007. Soil sampling found peat extended to depths of 1.5–2.8 m with basal radiocarbon dates of ~5–7 ka bp, newly accumulating post-thermokarst peat, and evidence of repeated episodes of permafrost formation and degradation. Soil surface temperatures in post-fire scrub bogs were ~1 °C warmer than in undisturbed black spruce bogs, and thermokarst bogs and lakes were 3–5 °C warmer than black spruce bogs. Vegetation showed modest change after fire and large transformations after thermokarst. We conclude that extreme seasonal weather, ecological succession, fire, and a legacy of earlier geomorphic processes all affect the repeated formation and degradation of permafrost, and thus create a highly patchy mosaic of ecotypes resulting from widely varying ecological trajectories within boreal peatland ecosystems. 
    more » « less